Introduction of Power Electronics (PE) Laboratory

Room: 8019-1 (Electrical Engineering Building)

Dr. Hafiz Furqan Ahmed

Assistant Professor, Department of Electrical Engineering Email: furqanhmd164@gmail.com

December 11, 2024

I. Development of Single-Phase Buck-Boost PV Inverters

Limitations of the Conventional Voltage Source Inverter for PV Applications

A buck-boost inverter system is required for PV applications

Conventional two-stage buck-boost inverter Drawbacks

- Two stage power conversion (dc-dc-ac)
- Generation of PV to grid leakage current

Proposed Single-Stage Buck-Boost Inverter

Proposed buck-boost inverter

Hardware prototype

Features

- □ Single-stage buck-boost voltage inversion
- Common-ground point between PV panel and Grid
- □ Elimination of PV leakage current

Experimental waveforms

II. Development of AC-AC Converters for Grid Voltage Regulation

Direct AC-AC Converter Based Dynamic Voltage Restorer (DVR)

□ Stabilize the grid voltage through series voltage injection

Direct AC/AC converter based DVR

□ Key features

- Single-stage power conversion
- No external dc-source

Laboratory implementation

Experimental Results for Voltage Sag

Voltage sag- depth of 36%

7

v_{in} drops from 110 *V_{rms}* to 70 *V_{rms} v_o* is regulated to 110 *V_{rms}*

Thank you for your attention !