DEPARTMENT OF ELECTRICAL ENGINEERING

Our research team focuses on the following research topics:

Refinement of Mist CVD Technology

Since most of our research relies on mist CVD technology, refining our facilities is important for achieving specific applications.

Mist CVD Lab.

- Ultra-wide band gap (UWBG) semiconductors
 - Oxide-based ultrawide bandgap (UWBG) semiconductors like MgZnO, AlZnO, GaZnO, Ga₂O₃, and (Al_xGa_{1-x})₂O₃ belong to the 4th Gen. semiconductor. We aim to use these UWBG for high-power, high-voltage, and deep-UV optoelectronics applications.
- Oxide-based synaptic transistors
 - Synaptic transistors emulate brain computing through neuro-morphology. Our focus is on designing and fabricating low-power consumption oxide-based synaptic transistors to enable efficient computing.

Thin-film transistors (TFTs) overcoming mobility-stability trade-off

Optimization of mobility and stability is an important topic in designing TFTs. Our goal is to utilize material and device structure design to overcome the trade-off between mobility and stability in oxide-based TFTs.

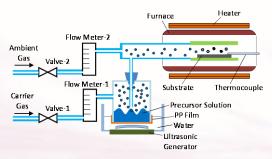


Fig. 1 Schematic mist CVD structure.

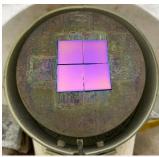


Fig. 2 Mist CVD-grown thin film on Si substrates.

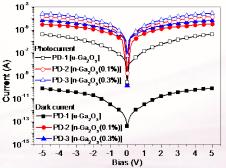


Fig. 3 Photoresponse characteristics of β -Ga₂O₃ with different Sn doping concentrations.

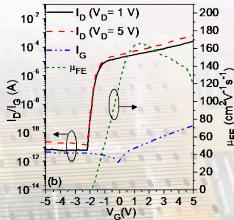


Fig. 6 High-mobility MgZnO/ZnO heterojunction thin-film transistor.

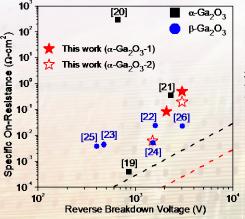


Fig. 4 Specific on-resistance versus breakdown voltage characteristics of α -Ga₂O₃ Schottky barrier diodes.

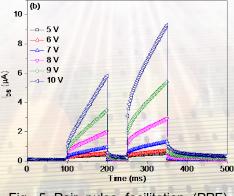


Fig. 5 Pair pulse facilitation (PPF) behaviors of our synaptic transistors.

